Simulation models#
-
sigtech.framework.infra.data_adapter.simulations.models.bootstrap(data, size, seed, replace=True)
Generate random samples from a given one-dimensional array.
- Parameters:
data – One-dimensional array.
size – Output shape.
seed – Seed.
replace – Whether the sample is with or without replacement (default is True).
- Returns:
Generated random samples.
-
sigtech.framework.infra.data_adapter.simulations.models.cir_process(initial, target, sigma, alpha, step_size, size, seed, sampling_steps=1)
Generate random samples from a Cox–Ingersoll–Ross model distribution.
- Parameters:
initial – Initial value.
target – Target value.
sigma – Sigma.
alpha – Alpha.
step_size – Step size.
size – Output shape.
seed – Seed.
sampling_steps – Sampling steps (default is 1).
- Returns:
Generated random samples.
-
sigtech.framework.infra.data_adapter.simulations.models.fit_cir_process(data, step_size=1, shift=1, floor=0.01)
Compute the parameters target, sigma, alpha to be used in the Cox–Ingersoll–Ross model.
- Parameters:
data – Input data.
step_size – Step size (default is 1).
shift – Shift value (default is 1).
floor – Floor value (default is 0.01).
- Returns:
tuple (target, sigma, alpha).
-
sigtech.framework.infra.data_adapter.simulations.models.normal_distribution(mean, std, size, seed)
Generate random samples from a normal Gaussian distribution.
- Parameters:
mean – Mean of the distribution.
std – Standard deviation of the distribution
size – Output shape.
seed – Seed.
- Returns:
Generated random samples.