RollingVarianceSwapStrategy#
-
class sigtech.framework.strategies.rolling_variance_swap.RollingVarianceSwapStrategy
Baseclasses:
RollingOptionsStrategyBase
Subclasses:
RollingVarianceSwap
A strategy that manages a rolling variance swap.
Keyword arguments:
underlying
: Name of the underlying asset.option_group
: Name of the corresponding option group. Either theunderlying
or theoption_group
is required.use_option_replication
: If True, the variance is estimated using a basket of options.vega_scaled
: Specifies if the notional should be scaled by the vega of the strategy.lower_strike_fraction
: The lower boundary of the strikes for replication (%ATM). Only relevant whenuse_option_replication
is True.upper_strike_fraction
: The upper boundary of the strikes for replication (%ATM). Only relevant whenuse_option_replication
is True.one_sided_option_num
: Number of replicating options in the basket on each side of ATM. Only relevant whenuse_option_replication
is True.
Example object creation:
import datetime as dtm rvs = sig.RollingVarianceSwapStrategy(currency='USD', maturity='3M', start_date=dtm.date(2019, 1, 4), rolling_frequencies=['1M'], option_group='SPX INDEX OTC OPTION GROUP', target_quantity=-1.0, use_option_replication=False)
-
currency: Optional[str]
-
lower_strike_fraction: Optional[float]
-
nominal_weight: Optional[float]
-
one_sided_option_num: Optional[int]
-
option_group: Optional[str]
-
property rolling_table
Builds the strategy’s rolling table. :return: Built rolling table as a pandas DataFrame.
-
underlying: Optional[str]
-
upper_strike_fraction: Optional[float]
-
use_option_replication: Optional[bool]
-
vega_scaled: Optional[bool]
-
roll_options(dt)
Set variance swap position.
- Parameters:
dt – Decision datetime.