Core functions#
-
sigtech.framework.signal.library.core.expanding_percentile(ts)
Expand the percentile rank of a timeseries.
- Parameters:
ts – pandas Series or DataFrame.
- Returns:
pandas Series or DataFrame.
-
sigtech.framework.signal.library.core.from_ts(ts)
Return a signal from timeseries.
- Parameters:
ts – Input timeseries.
- Returns:
Signal
object.
-
sigtech.framework.signal.library.core.percentile_score(array)
Compute the percentile rank of a score relative to a list of scores.
- Parameters:
array – Input array.
- Returns:
float.
-
sigtech.framework.signal.library.core.rolling_beta(ts, market_ts, window)
Rolling beta operator.
- Parameters:
ts – pandas Series or Dataframe.
market_ts – pandas Series or Dataframe.
window – Size of the window.
- Returns:
pandas Series or DataFrame.
-
sigtech.framework.signal.library.core.rolling_beta_adjusted_return(ts, market_ts, window, rtn_window=1)
Rolling beta adjusted return.
- Parameters:
ts – pandas Series or Dataframe.
market_ts – pandas Series or Dataframe.
window – Size of the window.
rtn_window – Size of the return window.
- Returns:
pandas Series or DataFrame.
-
sigtech.framework.signal.library.core.vol(*args, ts, factor=252, **kwargs)
Volatility operator.
- Parameters:
ts – pandas Series or DataFrame.
factor – Volatility factor (default is 252).
- Returns:
pandas Series or DataFrame.
-
sigtech.framework.signal.library.core.z_score(period, centered=True, min_periods=None, ts=None)
Z-score calculation.
- Parameters:
period – Size of the moving window.
centered – If set to True, do not consider the rolling mean (default is True).
min_periods – Minimum number of observations in window required to have a value.
ts – Input timeseries.
-
sigtech.framework.signal.library.core.z_score_zero_mean(ts, window, min_periods)
Z-score with zero mean calculation.
- Parameters:
ts – Input timeseries.
window – Size of the moving window.
min_periods – Minimum number of observations in window required to have a value.
- Returns:
float.